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A systematic theory is developed to study the nonlinear spatial evolution of the 
resonant triad in Blasius boundary layers. This triad consists of a plane wave at the 
fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic 
frequency. A low-frequency asymptotic scaling leads to a distinct critical layer wherein 
nonlinearity first becomes important, and the critical layer’s nonlinear, viscous 
dynamics determine the development of the triad. 

The plane wave initially causes double-exponential growth of the oblique waves. The 
plane wave, however, continues to follow the linear theory, even when the oblique 
waves’ amplitude attains the same order of magnitude as that of the plane wave. 
However, when the amplitude of the oblique waves exceeds that of the plane wave by 
a certain level, a nonlinear stage comes into effect in which the self-interaction of the 
oblique waves becomes important. The self-interaction causes rapid growth of the 
phase of the oblique waves, which causes a change of the sign of the parametric- 
resonance term in the oblique-waves amplitude equation. Ultimately this effect causes 
the growth rate of the oblique waves to oscillate around their linear growth rate. Since 
the latter is usually small in the nonlinear regime, the net outcome is that the self- 
interaction of oblique waves causes the parametric resonance stage to be followed by 
an ‘oscillatory’ saturation stage. 

1. Introduction 
1.1. Background 

Experiments on boundary-layer transition and accompanying instability-wave growth 
have identified several distinct flow-development regimes. The first regime begins with 
the onset of two-dimensional, Tollmien-Schlichting (TS) waves that at small 
amplitudes harmlessly grow and decay in accordance with the linear stability theory for 
a developing boundary layer. However, at larger amplitudes, a nonlinear, three- 
dimensional spanwise-periodic disturbance field appears. These three-dimensional 
disturbances grow at much higher rates than predicted by linear theory and ultimately 
lead to the transition to turbulence. For low-to-intermediate levels of two-dimensional 
disturbances, the nonlinear regime is characterized by the formation of a staggered, 
lambda-shaped structure indicating the appearance of a subharmonic of the input TS 
wave (Knapp & Roache 1968; Kachanov, Kozlov & Levchenko 1978; Kachanov & 
Levchenko 1984; Saric, Kozlov & Levchenko 1984; Corke & Mangano 1989). Since 
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this structure occurs at low-to-intermediate amplitudes of the TS wave, it is more likely 
to occur in natural transition than is the fundamental-type structure of Klebanoff, 
Tidstrom & Sargent (1962). The subject of the present work is, therefore, the 
subharmonic route to boundary-layer transition. 

The observed three-dimensionality in boundary-layer transition has prompted 
several theoretical and numerical investigations. Raetz (1959) and Craik (1971) 
proposed the existence of a resonant triad consisting of a plane wave and a pair of 
symmetrical oblique waves. If the wavenumbers are such that the phase velocities are 
equal, then a strong interaction might occur, leading to a selective growth of a pair of 
oblique waves with a particular obliqueness angle. Craik’s (1971) resonant triad thus 
established, in principle, the subharmonic route to boundary-layer transition. Smith & 
Stewart (1987) considered the resonant interactions in the high-frequency limit of the 
lower-branch scaling regime starting from the triple-deck equations where the critical 
layer is located in the viscous wall layer (lower deck). The linear secondary stability 
analysis of Herbert (1983, 1988) explained many features of the observed phenomena 
in the parametric-resonance stage of interaction. The parametric-resonance stage has 
also been studied by Mankbadi (1990) through analysing the critical-layer nonlinearity 
that results from the continual downstream growth of initially linear TS waves 
comprising a resonant triad. This analysis was inspired by an early version of Goldstein 
& Lee (1992), who first studied the nonlinear resonant-triad interaction in an adverse- 
pressure-gradient boundary layer by analysing the non-equilibrium critical layer. Their 
analysis revealed novel features that were not obtained before. The present analysis is 
along similar lines to that of Goldstein & Lee (1992) in that it includes the self- 
interaction of the oblique waves, which is proportional to the cubic amplitude of the 
oblique waves. Wu (1992) studied similar resonant-triad waves consisting of Rayleigh 
waves with 0(1) wavelength in an oscillatory Stokes layer. Further discussion of 
previous work on the subject is given in Craik (1985), Herbert (1988), and Kleiser & 
Zang (1991). 

1.2. Scope of present work 
In the present work a first-principles theory is developed for the study of a spatially 
evolving resonant triad in Blasius boundary-layer transition. The triad consists of a 
plane TS wave at the fundamental frequency w and a pair of three-dimensional oblique 
waves at the subharmonic frequency fw. The oblique waves make equal and opposite 
angles +S to the flow direction, and the oblique modes’ common streamwise 
wavenumber is nearly one-half that of the plane wave. The growth rate of the triad’s 
amplitudes is controlled by nonlinear interactions in the viscous critical layer and 
diffusion layer surrounding the transverse position where the wave’s phase velocity 
equals the velocity of the mean flow. 

Two stages of the nonlinear interaction can be identified in experimental observations 
on subharmonic-type transition : a parametric-resonance stage and a nonlinear stage. 
In the parametric-resonance (second-instability) stage, the subharmonic oblique waves 
experience a superexponential growth that is faster than the exponential growth 
predicted by the linear theory, but the fundamental plane wave follows the linear 
theory (Herbert 1988; Mankbadi 1990). This stage is followed by the nonlinear stage, 
wherein the subharmonic exceeds the fundamental and saturates. This latter stage has 
not yet been fully explored by direct numerical simulations owing to the resolution 
requirements that become prohibitive downstream. However, this stage is directly 
related to the final breakdown to turbulence, and exhibits several interesting features 
as have been observed in Corke & Mangano’s (1989) experiment. The present study 
considers the nonlinear interaction of the waves, starting from the linear stage going 
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through the parametric-resonance and the nonlinear stages. Emphasis is on capturing 
the nonlinear stage, which is achieved by allowing the oblique waves to grow to 
amplitudes large enough to capture the self-interaction of the oblique waves. This stage 
has also been emphasized in Goldstein & Lee’s (1992) analysis of a resonant triad of 
inviscid Rayleigh waves in an adverse-pressure-gradient boundary layer. 

Subharmonic resonance has been observed experimentally to first occur near, and 
continue downstream of, the upper-branch neutral stability curve (see data of 
Kachanov & Levchenko 1984; Saric et al. 1984; Corke & Mangano 1989). The 
parametric resonance growth rate (that results from the fundamental-subharmonic 
interaction) is proportional to the plane wave’s amplitude, which peaks at the upper 
branch. Furthermore, the present study reveals that the proportionality coefficient 
increases as the Reynolds number increases in the downstream direction. These two 
factors cause resonance to occur in vicinity and downstream of the upper branch, and 
the subharmonic maximum growth rate to occur downstream of the upper branch. It 
has been observed experimentally that if the upstream amplitude of the plane wave is 
forced to be large, the resonance location does not move upstream to the lower branch, 
and the Klebanoff-type of structure appears instead (Saric et al. 1984). Thus, the upper- 
branch scaling should be the appropriate one to adopt here for analysis of the 
subharmonic resonance phenomena. Upper-branch scaling leads to a multi-deck 
structure of the instability waves that is characterized by a distinct viscous/nonlinear 
critical layer separated from the viscous wall layer (Lin 1955; Bodonyi & Smith 1981), 
which cannot be captured by a triple-deck structure. Moreover, the upper-branch 
scaling is not restricted to the vicinity of the upper branch, but, as pointed out by 
Goldstein & Durbin (1986), at low dimensionless frequencies, covers most of the 
unstable Reynolds-number range, and breaks down only in an asymptotically small 
neighbourhood of the lower branch. 

Experimental observations indicate that the subharmonic resonance phenomenon 
occurs at low dimensionless frequencies F. This is because at high frequencies the 
growth rates are small and the unstable domain is narrow; therefore, the plane wave 
cannot reach an amplitude large enough to trigger the resonance phenomenon 
(secondary instability). The phenomenon is thus important at low frequencies, and as 
such, it is appropriate to adopt here a low-frequency asymptotic scaling. The 
asymptotic solution is an expansion in terms of a small-frequency parameter = 
(ov/ Uk)h, the maximum of which at the highest frequency point in the neutral stability 
curve is about 0.5. Since the resonance phenomenon occurs at lower frequencies, it 
should be described accurately by such a low-frequency scaling. 

The waves are taken to be initially describable by the spatial linear theory since 
observations on boundary-layer transitions reveal initially linear, harmonically time- 
dependent, spatially growing waves. The scaling and the linear solution are given in $2. 
The scaling leads to the multi-deck stability structure and brings into play the critical 
layer and distinguishes it from the viscous wall layer. Slowly varying amplitude 
functions are introduced in the linear solution and are ultimately determined by 
considering the nonlinear viscous flow in the critical layer. The linear solution in the 
different transverse zones of the boundary layer is obtained, and matching the solution 
in the different transverse zones leads to a linear relationship between the growth rate 
and the velocity jump across the critical layer. 

The continued downstream growth of the instability waves results in nonlinearity, 
which first appears in the nearly common critical layer. The appearance of nonlinearity 
in the critical layer was first pointed out by Lin (1957) and Benney & Bergeron (1969) 
and is supported by experimental observations, such as those of Corke & Mangano 
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(1989), which show that the nonlinearity is concentrated in the critical layer. Maslowe 
(1986) is an excellent review of critical layers in shear flows. 

Section 3 addresses the nonlinear, viscous critical-layer flow. If the scale of the 
oblique waves’ amplitude was taken to be the same order of magnitude as or less than 
that of the plane wave, the plane wave continues to follow the linear theory because 
the quadratic backreaction on it does not appear in its amplitude equation. However, 
the presence of the plane wave causes a double-exponential growth for the oblique 
waves with the effect of the oblique waves’ self-interaction absent (Mankbadi 1990). 
However, the scales are determined in $ 3  such that the self-interaction of the oblique 
waves is captured. This requires allowing the oblique waves to continue to grow in the 
linear and resonance stages up to the first order of magnitude at which their amplitude 
becomes large enough to produce self-interaction. It is shown in $ 3  that the interaction 
produces a jump across the critical layer that corresponds to linear growth and to a 
parametric resonance interaction. 

The interaction of the oblique waves in the critical layer produces a spanwise- 
periodic mean flow that cannot be matched directly to the outer layer and needs a 
diffusion layer (buffer layer) that sandwiches the critical-layer. The solution for the 
diffusion-layer flow is given in $4. The dominant balance in the diffusion layer is 
between the slow growth and the viscous effects. This nonlinearly generated mean flow 
interacts with the lowest-order oblique waves to produce a self-interaction term. The 
amplitude equations are then obtained in $ 5  by equating the velocity jump obtained 
from the nonlinear, viscous flow to the one obtained from the linear, outer solution. 
This yields a direct, nonlinear relationship between the growth rates and the 
amplitudes. 

Results are presented in $6 with the weak flow-divergence effects suppressed by 
freezing Reynolds number. This is asymptotically correct because of the high Reynolds 
number and the comparatively short streamwise distance wherein nonlinearity occurs. 
The two stages of the interaction are illustrated. In the first stage the plane wave 
continues to follow the linear theory but causes a double-exponential growth of the 
oblique waves. However, as the oblique waves continue to grow to the extent that their 
amplitude exceeds that of the plane wave by a certain level, the nonlinear stage comes 
into effect. The self-interaction of oblique waves becomes a significant mechanism 
which causes an explosive growth of the phase angle of the oblique waves indicating 
a rapid change of its streamwise wavenumber. This causes the parametric resonance 
term to change sign and ultimately leads to a net growth rate that is in effect an 
oscillation around the linear growth rate. If the local linear growth rate of the oblique 
waves is zero then the self-interaction mechanism leads to oscillatory saturation. 

2. Scaling and linear solution 
Details of the linear solution are given in Mankbadi (1990); we limit the results here 

to those relevant to the nonlinear solution. The base flow is an incompressible laminar 
boundary layer with Blasius mean velocity U,, where 

y4+ ... asy+O, (1) 
ha 

VB = w-m 
and h = 0.332 denotes the scaled Blasius skin friction. The unsteady flow starts out as 
a resonant triad of spatially growing instability waves: a two-dimensional mode of 
normalized frequency w and wavenumber a, and a pair of subharmonic oblique waves 
of frequency fw, streamwise wavenumber nearly equal to ict, and spanwise wavenumber 
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FIGURE 1 .  (a) Flow structure. (b) Stability wave structure. 

f p. Upstream of the nonliner region (figure 1 a) the waves evolve according to weakly 
non-parallel flow linear theory. All velocities are normalized by the free-stream velocity 
U,, lengths by S,, time by S,/U,, and pressure by pUi,  where p is the fluid density, 
6, = (vx/U,)' is the boundary-layer thickness, and v is the kinematic viscosity. 

The small-frequency parmeter g is related to the normalized dimensionless frequency 
I: by the relation (Goldstein & Durbin 1986) 

(2) 

i? = d O R ,  (3) 

ov F = - = p  
u;- ' 

and the Reynolds number scales as 

where R is the Reynolds number based on the local thickness 6, and the overbar 
denotes an order-one scaled quantity. The normalized, complex wavenumber a is 
small, and its imaginary part is even smaller than its real part. Consequently, each of 
the three waves has a well-defined critical layer at nearly the same transverse position, 
y,, where the real part of their nearly common phase velocity, c, equals the streamwise 
velocity Ub,). In the upper-branch scaling a = c r ~ +  . . . , c = crc+ . . . , where a and care 
order-one real constants. Outside the critical layer, the unsteady flow is governed by 
linear dynamics, and the velocity field is given by 

24 = U,(Y) + Re{EAo(x,) Go, JYY x1 ,4  eix + SA(X1) [U+(Y, x1 ,4  eiz 
+ ~ ( y ,  xl, c) ,pi"] BX>, (4) 

( 5 )  u = - Re{i[saA, @, eix -k 287A@ cos Ze~'"]}, 
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w = Re{SA( W+ eiz + W- e-iz) eiix}, (6) 
where x = aa(x- act), z = a@., (7) 

7 = [ ( E / 2 ) 2 + p p ,  (8) 
x,  = a4x, (9) 

and Re denotes the real part. A multiple scale procedure is used and the slow scale x, 
is introduced. In the above equations the scaled amplitudes A, and A are for the two- 
dimensional and the oblique waves, respectively, and E and 6 are their corresponding 
order of magnitudes. The amplitudes will ultimately be determined from the nonlinear 
analysis in the critical layer. Because the initial development of the instability waves is 
linear, we can take A(x,) to be a real quantity initially, but we allow A,(x,) to be 
complex to account for possible wavenumber detuning. Farther downstream the 
nonlinear effects cause both A(x,) and A,(x,) to be complex. In (4) and (6), U, - and W, 
satisfy the relations 

(10) 
(1 1) 

and @,(a, c,, y )  and @(y, c, y )  satisfy the corresponding On-Sommerfeld equations 
subject to the usual boundary conditions @ = QjY = 0, = @,,, = 0 at y = 0. The 
wavenumbers and phase velocities scale to the required order of approximation as (see 
Goldstein, Durbin & Leib 1987) 

[(Y2-P23/Y1 u, W l r )  W, = @g, 

(Plr) u, W Y 2 - P 2 > f l r 1  w, = [P/(r2-P2>~1 @U,I(U-C)5 

frc f r F  _ _  . . 

a3 A” c, = C =  
a3 Ah’ 

l + c -  1+2,- 
la A, ia A 

(13) 

F =  R/a. (14) 
Here, the prime denotes differentiation with respect to the slow variable x,. The scaling 
(2), (3) and (14) are consistent with Reid’s (1965) equation (3.128). 

In the high-Reynolds-number limit, the unsteady flow solution exhibits a multi- 
zoned structure (figure 1 b), in which the critical layer is distinct from the viscous wall 
layer (see Bodonyi & Smith 1981 ; Drazin & Reid 1981, p. 166; and references therein). 
Zone I closest to the wall (Stokes layer) is a viscous layer. Zone I1 (Tollmien region) 
is an inviscid, rotational layer of adjustment, within which the viscous critical layer 
zone I11 is induced. Zone IV is above zone I1 and is an inviscid rotational region 
comprising most of the boundary layer. Above zone IV is the quasi-steady zone V, in 
which the flow properties are inviscid and irrotational (U = 1, V = 0). Zones IV and V 
can be combined into one zone (Heisenberg region). As will be seen in $4 a diffusion 
layer that sandwiches the critical layer is needed to match the mean flow generated in 
the critical layer to the outer flow. Matching the linear solutions in zones I1 and IV 
produces the relations 

$7 = a+ O(a3), 
hc = a+ O(a). 
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Here A$ and A$, are the 
for the oblique and plane 
which scales as 

~ velocity jumps across the critical layer (and diffusion layer) 
waves, respectively, and yc  is the location of the critical layer, 

ye = ax. (19) 
In the Tollmien region, the scaled transverse coordinate y = aY, Y is 0(1), is 
introduced directly into the Orr-Sommerfeld equation before attempting to obtain the 
solution in this region. The obliqueness angle 8 is defined as 

Upon substituting (8) and (17) into (20), we obtain 
8 E sin-l (j?/y)>. (20) 

e = 600 
for the perfect tuning case. 

The velocity field in zone 11, which contains the critical layer, is given according to 
the linear solution as 

A2 
2.4! u = ah Y- a4 - Y4 + Re{[h + aa, + a"+ i p q  $:)I EA, eix + 26Ag (cos z> etx} + . . . , 

(22) 
(23) 
(24) 

Y = - Re a 2 A  y[izeA, eix + 2i76A (cos Z) eii"] + . . . , 
w = -Re 2iSchYA (sin 8 sin Z) eiiX + . . . , 

p = Re ach[eA, eix + 26A (cos 8 cos Z) e:ix] + . . . , 

+ c(h + aa) Y(sin 8 tan 0) + a3 

(25) where 

cos 8 + sin 8 tan 8Y 
h+aa g = -  
cos 8 

I1 + hY - -- ( r, + 2 Y- EEY) 'G 
+ysin28 AA' PA [ 1-hYY ( 1+- c ~ ~ ) ] + ~ ( ~ ~ + ~ = ~ - s i n ~ 8 )  1 , 

3. Nonlinear, viscous flow in critical layer 

appropriate transverse scaled coordinate in this region (Lin 1955) is given by 

On substituting (29) into (22)-(25), we find that the critical-layer solution expands as 

+ ~(u,, ,, + cruo, + A,, a + cr'u,, + . . .) + .. . , (30) 
(3 1) 
(32) 
(33) 

The previous linear solution (22)-(25), becomes singular at the critical point. The 

7 = (Y- Y,)/a? (29) 

u-cc = d ~ i 7 + ~ a ~ ~ Y , ~ + ~ a * p ~ + ~ ( o - ~ u ~ , + c r - ~ # ~ , + u 0 + c r ~ , + c r ~ # , +  ...) 

ir = - Re[scr-2&l Y, iA, eix + 2~?a-~yA Y, (cos Z)iA eiiX] + . . . , 
w = 6(a-%-, + a-lw-l + w, + fTwl + a2w2 + a3w3 + . . .), 

p = Re[sahcA, eix + 2Sahccos 8 cos Z A  eiiX] + . . . , 
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2, = a4V, c= hY,+O(a3). (34) 

The momentum equations can be expressed in terms of the scaled variables x,, X ,  2, 
and 7 as (Mankbadi 1990) 

ax, R a72 21' 1)' a(u-aq-+D-+pw-+a3u---- (u,V,w) = -(apx+a3p a-sp- PpJ, a a3 

a a - a  { ax a7 az 
(3 5 )  

and the continuity equation as 

Eu,+iJq+~wz+a3u,l = 0. (36) 

The scale of the plane wave amplitude that produces a parametric resonance term 
in the oblique-wave equation is given by 

e = do. (37) 
As for the oblique waves, taking 6 < e, as was done in Mankbadi (1990), captures the 
parametric resonance stage, but not the subsequent stage where the self-interaction of 
oblique waves becomes important. To capture the latter stage, a larger scaling of the 
oblique waves amplitude is needed, namely 

6 = €/a2 = as. (38) 
As outlined below, the above scaling arises from considering the interaction of the 
oblique waves in the critical layer and the diffusion layer. The nonlinear interaction in 
the critical layer produces a spanwise-periodic mean flow (02) that cannot be matched 
directly to the outer layer. Therefore, we introduce a diffusion layer (buffer layer) that 
sandwiches the critical-layer.. The dominant balance in the diffusion layer is between 
the slow growth and the viscous effects. This nonlinearly generated mean flow, which 
is unbounded in the critical layer, interacts with the lowest-order oblique waves in the 
diffusion layer to produce a self-interaction term. The requirement that this term be of 
the same order as the linear and parametric resonance terms determines the scaling of 
the oblique waves amplitude. 

Substituting (37) and (38) into (30H33) allows one to rewrite the expansions in the 
general form 

u - ac = dA7+ + a7U, + a8u8 + a9ug.. . , 
B =  a 6 V , + a 7 V , + a 8 V , + c r 9 & + + . . . ,  

p = a9Pg + a'"o + a"Pll + P P I Z  + . . . . 
w = a6W,+a7W,+fPW,+a9W,+ . . . ,  (39) 

The Blasius mean flow components at the order a6 and as are given by 
- - 

(40) u -1 
6 - @&q, = &.r", 

and the outer linear solution gives for the oblique and plane wave components, 
respectively, 

(V,, = Re A( -iyY,, ccos 0) 2 (cos Z)A eiix, (41) 
(42) 

Substituting (39) into (35) and (36), we obtain the following equations for each term 
(V,, PJzD = Re A( - ixq,  3 A,  eiX. 
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in the expansion (39) that describe the nonlinear viscous flow in the critical layer, for 
L = 6,7,8,  ... 

L 

where 

~ 

93 ' L  y K  U 1 3 + L - K ) - ~ p ~ 3 + L ) , X - P L , x , ?  
K = 4  

U K =  V K =  W K = P K + , = O  forK=3,4,5.  

3.1. Jump across the critical-layer 
The amplitude equations are derived by equating the velocity jump across the critical 
layer and diffusion layer to that obtained from the outer linear solution (Mankbadi 
1990). 

3.1.1. Oblique waves 
The amplitude equation is obtained by equating the velocity jump from the 

nonlinear solution (39) with that from the outer linear solution (22>(25). For the 
oblique waves this jump occurs at the U,, level. The equation for U&, a, obtained from 
(43), is 

z3 q1, = AD+ w,, - (AT u; + m:o)7zl + ~ C O S  e) us, x 1  

8 

- c "14-K u g , X + p & 4 - K  ';,Z+ '14-K uL, i i )T? (45) 
K=6 

where U& = UKcos8+ WKsin8, (46) 

(47) 
- a  a Df = cos Op-- sin Oz- az ax* and 

Since the velocity jump from the outer solution to be matched is composed only of 
oblique waves of the form - exp (+iXk iZ), only the solution of U& corresponding to 
n = 1 and m = 1 is needed. 

The lowest-order solution for the oblique waves at the 6-level can be written as 
(U,, W,),, = 2 Re(i tan 8 cos 2, sin Z) Q(7, xl) e t x ,  (49) 

(50) 

where Q satisfies 
Q = yAcA sin 8 cos 8. 
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Using Fourier transform in 7, we obtain 
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Q = A@) sin 8 Lm exp (iK7 + ;hF) dK, 

where 7 = q / F ,  h = 2/(~Ac3R), R = X, - x0, 
and x, is the origin of the nonlinear region. Substituting the lower-order solution into 
(45) we obtain QF) and its Fourier transform Q r ) ( K ) .  The velocity jump for the three- 
dimensional wave, is given by 

which yields J , ~  = -~$A+--A,A* 3nR2 4 1 . (54) 

3.1.2. The two-dimensional wave 
Comparing the expansion (39) with the linear solution (22)-(25) indicates that the 

velocity jump for the two-dimensional wave occurs at the level of U13. The equation for 
U,, is obtained from (43) as 

U:37 = hD+W,,-(h7Uf,+cU:,)rlxl-(U, u:,xl+ u, ul,s,)v 
10 

+h(cos@)U,l),q- c (tiU16-K u z , X + B w l S - K  u i , Z +  '16-K u&,z)Fj' (55)  
K=6 

The general solution for (55) is in the form 

u:3, q = Re QE")(q, xl) exp[i(+nX+ m a ] .  (56) 
n, m 

We need to obtain Q g )  in order to match the critical layer jump to the outer one. The 
procedure is similar to that outlined in 53.1.1. The jump for the two-dimensional wave, 
JaD, is obtained as 

JzD = J:wQg)dq= --TA,. in ~i? 

An A2 term appears on the right-hand side of equation (55) but it was found not to 
produce a jump across the critical layer, as was first shown in Goldstein & Lee (1992). 

3.2. MeanJEow generated in the critical layer 
The interaction of the oblique waves (6 = g8) in the critical layer generates two- 
dimensional mean flow of the form (00) and spanwise-periodic mean flow of the form 
(02). However, the (02) flow component becomes unbounded outside the critical layer. 
A diffusion layer (buffer layer) is required for its matching to the outer flow. In fact, 
this is a characteristic of an equilibrium critical layer of three-dimensional modes, as 
noted by Brown, Brown & Smith (1993), and Wu, Lee & Cowley (1993). We consider 
herein the generated (02) flow component which is required to determine the diffusion- 
layer solution. The generated (02) flow is governed by 

(57) 8 h  

Wg(OZ) = i2pQQ* -:AT y(A*Q,- AQ?), 
1 a 2  

R ap (58 )  

(59) 

--- 

' ( 0 2 )  9, 7 = -2iPw(O2) 9 ,  
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eziz + . . . . As 7 goes to f a, we where we have put (U,, V,, 6) = Re( U$,02), Vp2) ,  
can show that 

9 

I? Q + - i=A sin 8, 
7 

(61) 

(62) 
~ ~ ) ~ - 2 i S ~ R l ~ ~ 1 ~ [ + C ( i 1 ” / 4 ! ) + C , ( ~ / 3 ! ) I n l r l +  ...I, (63) 

Wg(OZ) + IAI2(C, In Ig f CT+ C2), 

where C, is given by 

and the coefficient C is obtained by integrating equation (58) as follows: 
C, = - iPyR sin 8 cos 28, 

which gives 

Because these flow components become unbounded as 7+ f coy a diffusion layer is 
required to match them to the Tollmien region. 

4. Diffusion-layer flow 

viscous effects, which determines the diffusion-layer scale as 
The dominant balance in the diffusion layer is between the slow growth and the 

The momentum and continuity equations for the diffusion-layer flow become, 
respectively, 

au a 7  -aw au 
ax q az ax, 

E-+-+/?-+v3- = 0, 

where we have put 
V E  $7 

The expansion in the diffusion layer can be written as 

Equation (68) can now be written in the form: 
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The solution at the lowest order is given by 
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U6,5 = 2 sin 8 tan 0 cos Z ( F / ~  Re A eiiX 
&,5 = - 27Fcos 2 Re iA eiix, 
W,, = - 2 sin 8 sin Z(F/g Re iA eiix. 1 

4.1. The mean flow Uo2) in the d@usion layer 
The first term of Up2)  in (63) that is generated at order g9 within the critical layer 
(equation (63)) induces a term of order c7 in the diffusion layer because it is 
proportional to q, and the next term in (63) induces a term of order v7.5 In Q in the 
diffusion layer because it is proportional to q l n q  as 7-t 00. To calculate the flow in 
this region we first let 

(U L ,  V L I  W L ) = Re ( Of2), VFa), mio2)) eaiz + . , . . (75) 

The equation for Op2) becomes 

and the continuity equation becomes 

Combining (75) and (76) gives 

and for P O 2 )  we obtain 

The solution for V ~ , ~ )  must satisfy the condition 

and is given by 
mJ,!:b++CIA12 as t + & O ,  

The solution for U(02) is then obtained in the form 
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FIGURE 2. The mean flow (02) generated by the interaction of the oblique waves. 

The normalized mean flow given by (84) is shown in figure 2, which indicates that it 
reaches a constant value outside the diffusion layer. 

4.2. Jump across the difusion layer 
The streamwise component of the mean flow generated at order r' interacts with the 
oblique wave at the leading order 8.5 to produce a jump across the diffusion layer at 
0(d1). The governing equation at this order is obtained from (72) as 

where UL is defined in (46). If we let 

U;, = Re Ul?l1)@, x,) exp (&Y+ iZ) + . . . , (86) 

then the (11) component becomes 

The jump J across the diffusion layer can then be obtained from 
a? 

J = U:$) dy. 

Upon substituting (87) into (88) we obtain 

Substituting (83) into (89) shows that the jump is given by 

J = iFCcos28A(xl) IA(x1-x,)l2dx2. 
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Substituting for C from (66), we obtain 

2x 
6r 
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(9 1) 

where r(:) = 2.6789 (92) 

p = :a tan 8, B = (A@$, c = ( R / A ) ~ ,  (93) 

J = -r(+) (cos 28 sin2 8) C ~ R ~ A ( X , )  IA(x, - x,)I2 dx2, 

denotes the Gamma function. Substituting 

in (91) gives 

- 

r($) 2' sin2 8 cos 28 tan2 B$A(x,) JA(x,  - xJ2 dx,. (94) 1 x J=- 
2.6Q3 

The diffusion-layer dynamics are probably generic for three-dimensional disturbances. 
Similar analysis will be adopted in Wu (1993), wherein unequal amplitudes for the 
oblique-waves pair will be studied along with the structure of the mean-flow distortion. 
Results for the interaction of a plane wave with two pairs of oblique waves with 
frequencies detuned from the fundamental-subharmonic relation was given in 
Mankbadi (1991 a, 1993). 

5. The amplitude equations 
The amplitude equations are obtained by equating the jump obtained from the linear 

solution to that obtained from the critical and diffusion layers. Rewriting (15) in the 
form 

(95) 2 d x  R hc 3D' 

and substituting (54) and (94) into (95) yields the amplitude equation for the oblique 
waves 

5dA A . R  _-  = A2=-1- J 

where 

37c R3 dA 
dx  10 A 
- = K ~ ~ A + - - ~ A * A ~ + ~ M A ( ~ )  

KOb = :($-$$), (97) 

(98) 
7c and 

The first term in (96) characterizes the linear growth. The second term describes the 
fundamental-subharmonic mutual interaction that is termed, here, the parametric- 
resonance term. The third term describes the cubic, self-interaction of the oblique 
waves, which arises from the diffusion layer. Brown et al. (1993), in the context of 
Rayleigh wave-vortex interaction, have also obtained a nonlinear interaction term of 
the type given by the third term in (96). Wu et al. (1993) have shown that a term of this 
form arises in the very viscous limit of the original oblique mode analysis of Goldstein 
& Choi (1989). 

= -- r(:) R4 sin2 e tan2 8 cos 28. 
5.6: 

For the plane wave we rewrite (16) as 
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and substituting (57) into (99), yields the plane-wave amplitude equation which can be 
written as 

dA 
= KO A,. dx 

and shows that the plane wave follows the linear theory. The linear growth rate is given 
by 

Equating K~ to zero gives Reid's (1965) equation (3.128) for the upper branch of the 
plane-wave neutral stability curve. The viscous Stokes layer contribution to the linear 
growth rate of the oblique waves in (97) is consistent with Smith & Stewart's (1987) 
result. Setting both of the linear growth rates in (97) and (101) to zero shows that the 
subharmonic oblique waves with 19 = 60" and the plane fundamental wave reach their 
linear upper-branch neutral stability curves at Rup, f  = 0.1537 and Ru,,, = 0.1725, 
respectively. Equation (96) for the oblique waves along with (100) for the plane wave 
represent the final spatial evolutions for the resonant triad waves. 

6. Nonlinear mechanisms for the triad's waves 
We now examine the simultaneous development of the plane and oblique waves with 

the Reynolds number frozen in order to elucidate the role of the nonlinear mechanisms 
independently of the mean flow-divergence effects. The solution of the evolution 
equations, (96) and (loo), is determined by the following initial conditions: the 
magnitude IA,I of the oblique wave amplitude; the magnitude IAotI of the plane wave; 
the phase $oi of the plane wave; and the initial phase of the oblique wave $i, which 
is taken to be zero. The obliqueness angle is 8 = 60". We first discuss in 86.1 the 
parametric resonance mechanism with the self-interaction between the oblique waves 
neglected. The effect of the self-interaction mechanism is then considered in 86.2. 

6.1. The parametric resonance mechanism 
We consider here the solution of the amplitude equations with the self-interaction term 
neglected. Perfect tuning is assumed herein; and the reader is referred to Mankbadi 
(1991a) for the effect of detuning. The evolution equations can then be solved 
analytically (for a frozen Reynolds number) to obtain 

where 

and the effective phase angle $, defined as 

II.e = @0-2II.3 (104) 

(105) 
(106) 

(107) 

is given by sin (II.e) = ( r  - l)/(r + l), 
r = c, exp [ - 4(0 /~ , )  lAoil PI. 

c4 = (1 + sin @ei)/( 1 -sin 

where 
The constant c4 can be related to the initial phase angle $ei by 
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FIGURE 3. Development of the oblique waves at various initial phase-difference angles, $et, in the 
absence of the self-interaction mechanism. A,, = 2, R/R,,,f = 0.9; -----, linear growth. (a) 
Magnitude; (b) phase. 

The first exponential factor in (102) is the linear growth rate. The next exponential 
factor represents augmentation or suppression of the growth rate above the linear 
growth, depending on the initial phase angle lCFer (which determines c,). Note that c, 
ranges from 0 to co. Two values of $ei are of particular interest, eei = :n and in 
(corresponding to c, = co and 0, respectively). In either case (102) reduces to 

14 = 141 exP (KO* x) exp (* (D IKO)  IAOil exp [KO xlh (108) 

with the negative sign in the second exponential factor corresponding to in and the 
positive sign corresponding to in. 

Figure 3 shows that the oblique waves initially exhibit a linear growth. This is 
followed by the parametric-resonance stage in which, exept for lCrer = in, the presence 
of the plane wave causes a double-exponential growth given by the second exponential 
factor in (102). 

6.2. The self-interaction mechanism 
We now consider the solution of the evolution equations with the self-interaction term 
present. In figure 4 the initial phase difference angle is tn. In the parametric resonance 
stage the phase angle of the oblique waves for $ei = :n remains at its initial value. 
Because the coefficient of the self-interaction term is imaginary in (96), it causes an 
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FIGURE 4. Effect of the self-interaction mechanism. $#, = 3x12, A,, = 5, and RIR,,,, = 0.95. (a) Phase 
of oblique waves, (b) sin$, for A ,  = 0.01, (c) amplitude of oblique waves. (i) Parametric resonance 
with self-interaction term set to zero; (ii)-(iv) self-interaction accounted for: (ii) A, = 0.01, (iii) 
A, = 0.1, (iv) A, = 1.0; -----, linear growth. 
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FIGURE 5. Effect of the self-interaction mechanism. t+he, = in, A,, = 5, and R!R,,,, = 0.95. (a) Phase 
of oblique waves, (b) sin t+he for A< = 1 .O, (c) amplitude of oblique waves. (1) Parametric resonance 
with self-interaction term set to zero. (ii>-(iv) self-interaction accounted for: (ii) A, = 0.01, 
(iii) Ai = 0.1, (iv) A, = 1.0. 
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FIGURE 6 .  Effect of the self-interaction mechanism for zero linear growth of the oblique waves ( R  = 
R,,J. = tn, A,, = 20, (i) parametric resonance with self-interaction neglected, (iiHiv) self- 
interaction accounted for, A,:  (ii) 0.020, (iii) 0.022, (iv) 0.024. 

explosive growth in the phase of the oblique waves (figure 4a) .  This introduces a rapid 
oscillations in sin+, (see figure 4b) ,  which determines the sign of the plane-oblique 
waves interaction term. Figure 4(c)  shows that this effect causes oscillations in the 
amplitude to follow the parametric resonance stage. The increasingly rapid oscillations 
in sin +, ultimately reduce the parametric resonance growth rate to oscillations around 
the linear growth rate. The results of figure 4 are repeated in figure 5 for an initial phase 
difference angle of y+,i = in wherein the parametric interaction initially suppresses the 
growth of the oblique waves. However, the figure indicates that the oblique waves self- 
interaction ultimately causes the same effect as that shown in figure 4.  

The resonance phenomenon has always been found to occur in the vicinity of the 
upper branch where the linear growth rate is almost zero. The effect of self-interaction 
is shown in figure 6 for RIR,,,, = 1, i.e. for zero linear growth rate for the oblique 
waves. Under these conditions, the figure shows that the self-interaction causes the 
parametric resonance growth rate to be reduced ultimately to oscillations around the 
zero linear growth rate. This means that the self-interaction leads to oscillatory 
saturation, which may explain the observed saturation of the oblique waves. Self- 
interaction of a pair of oblique waves was first analysed by Goldstein & Choi (1989) 
for a free shear layer and was also found by Goldstein & Lee (1992) to play an 
important role in adverse-pressure-gradient boundary layers. 

7. Discussion 
In the pioneering work of Craik (1971) and its extension by Usher & Craik (1975), 

the coefficients in their equations for the temporally growing resonant triad were 
obtained using Stuart-Watson-Landau theory, which is not based on critical-layer 
nonlinearity. Their study suggested that the dominant contribution to the coefficients 
comes from the critical layer. In the present theory, which is for spatial growth, the 
amplitude equations are obtained by systematically considering the nonlinear/viscous 
critical-layer flow. This is consistent with Craik's earlier finding about the critical-layer 
contribution and leads to a truncated system that accounts for the additional modes 
generated by the nonlinear interactions in the critical layer. The present finding that the 
quadratic backreaction term is absent from the plane wave equation accords with 
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Usher & Craik’s estimate that this term is smaller by a factor of R than the parametric 
resonance term in the oblique-waves equation. Also, the significant, cubic self- 
interaction of oblique waves, obtained here in a rigorous fashion, confirms Usher & 
Craik’s estimate that large cubic interaction coefficients may be expected. 

Smith & Stewart (1987) developed an asymptotic analysis of the resonant-triad 
interaction based on the triple-deck equations. Their results are focused on the case 
where nonlinearity comes into play at the Reynolds number and frequency range close 
to the lower branch, where the critical layer merges into the wall layer (lower deck) and 
its role was not considered in their analysis. This produces two-way coupling of oblique 
and plane waves as soon as the oblique waves become of the same order of magnitude 
as the plane wave. The present work differs from the triple-deck analysis of Smith & 
Stewart in several respects, the most important of which are : (i) the self-interaction of 
oblique waves is absent in the Smith & Stewart’s (1987) analysis. The present work 
captures this self-interaction mechanism by allowing the oblique waves to grow from 
less-than to larger-than the plane wave. This mechanism turns out to be the significant 
mechanism in the nonlinear stage and it causes the experimentally observed saturation 
of the oblique waves. (ii) The linear and the fundamental-subharmonic interaction 
terms in Smith & Stewart have different numerical values from the present ones. This 
is not due to scaling of the amplitude functions, but results from the fact that Smith 
& Stewart’s triple-deck analysis is concerned with modes relatively close to the lower 
branch. In contrast, the present analysis, in which the critical layer contribution is the 
key issue, is relevant to the streamwise region downstream of the lower branch. 

Because, as the present analysis indicates, backreaction on the plane wave does not 
come into play in the parametric-resonance stage of interaction, this stage can be 
described by the linear secondary stability analysis of Herbert (1988), which assumes 
at the outset that the plane wave will continue to follow the linear theory. However, 
the next stage obtained here cannot be described by a secondary stability analysis, since 
this stage involves the self-interaction of the oblique waves. 

Goldstein & Lee (1992) developed a first-principles, critical-layer theory for the 
nonlinear resonant triad in adverse-pressure-gradient boundary layers. The linear 
instability modes are inviscid, Rayleigh waves, as opposed to the viscous, Tollmien- 
Schlichting waves considered here. Their critical layer is growth-dominated, 
which leads to integro-differential equations for the amplitudes in which the 
backreaction of the oblique waves on the plane wave come into effect at a leading 
order. In the present analysis the backreaction is found to occur at higher-orders. The 
subharmonic self-interaction mechanism was significant in adverse-pressure-gradient 
boundary layers, as it is in the present Blasius boundary-layer case. However, because 
the Goldstein & Lee (1992) critical layer is non-equilibrium type, the self-interaction is 
in the form of a double integral and ultimately leads to explosive growth of the 
instability waves at a finite downstream position. In the present analysis it is possible 
to split the evolution equations as real equations for the magnitude and phase with the 
self-interaction terms appearing only in the phase equation. This causes an explosive 
growth in the phase of the oblique waves which causes the parametric resonance term 
to alternate signs. The net growth rate oscillates around the linear growth rate. Since 
the latter is almost zero in the nonlinear regime, the ultimate effect of the self-interaction 
mechanism is to produce saturation of the oblique waves, which will be discussed in 
greater details in a subsequent paper. 

R.R.M. wishes to express his thanks to Dr M. E. Goldstein, who has specially 
influenced and inspired this work. 



Critical-layer analysis of the resonant triad 105 

REFERENCES 
BENNEY, D. J. & BERGERON, R. F. 1969 A new class of nonlinear waves in parallel flows. Stud. Appl. 

BODONYI, R. J. & SMITH, F. T. 1981 The upper branch stability of the Blasius boundary layer, 

BROWN, P., BROWN, S. N. & SMITH, F. T. 1993 (In preparation). 
CORKE, T. C. & MANGANO, R. A. 1989 Resonant growth of three-dimensional modes in transitioning 

Blasius boundary layers. J .  Fluid Mech. 209, 93-150. 
CRAIK, A. D. D. 1971 Non-linear resonant instability in boundary layers. J.  Fluid Mech. 50, 

393413. 
CRAIK, A. D. D. 1985 Wave Interactions and Fluid Flow. Cambridge University Press. 
DRAZIN, P. G. & REID, W. H. 1981 Hydrodynamic Stability. Cambridge University Press. 
GOLDSTEIN, M. E. & CHOI, W. W. 1989 Nonlinear evolution of interacting oblique waves on two- 

dimensional shear layers. J .  FluidMech. 207,97-120. (See also Corrigendum, J.  FluidMech. 216, 

GOLDSTEIN, M. E. & DURBIN, P. A. 1986 Nonlinear critical layers eliminate the upper branch of 
spatially growing Tollmien-Schlichting waves. Phys. Fluids 29, 23442345. 

GOLDSTEIN, M. E., DURBIN, P. A. & LEIB, S. J. 1987 Roll-up of vorticity in adverse-pressure gradient 
boundary layers. J .  Fluid Mech. 183, 325-342. 

GOLDSTEIN, M. E. & LEIB, S. J. 1988 Nonlinear roll-up of externally excited free shear layers. J .  Fluid 
Mech. 191, 481-515. 

GOLDSTEIN, M. E. & LEE, S. S. 1992 Fully coupled resonant-triad interaction in an adverse-pressure- 
gradient boundary layer. J .  Fluid Mech. 245, 523-55 1. 

HALL, P. & SMITH, F. T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer 
transition. J.  Fluid Mech. 227, 641. 

HERBERT, T. 1983 Subharmonic three-dimensional disturbances in unstable plane shear flows. AZAA 
Paper 83-1759. 

HERBERT, T. 1988 Secondary instability of boundary layers. Ann. Rev. Fluid Mech. 20, 481-526. 
KACHANOV, Yu. S .  1984 Development of spatial wave packets in boundary layer. In Laminar- 

Turbulent Transition (ed. V. V. Kozlov), Proc. Second IUTAM Symp. Novosibirsk, pp. 
115-123. Springer. 

KACHANOV, Yu. S., KOZLOV, V. V. & LEVCHENKO, V. YA. 1978 Nonlinear development of a wave 
in a boundary layer. Fluid Dyn. 12, 383-390. 

KACHANOV, Yu. S. & LEVCHENKO, V. YA. 1984 The resonant interaction of disturbances at 
laminar-turbulent transition in a boundary layer. J.  Fluid Mech. 138, 209-247. 

KLEBANOFF, P. S., TIDSTROM, K. D. & SARGENT, L. M. 1962 The three-dimensional nature of 
boundary-layer instability. J.  Fluid Mech. 12, 1-34. 

KLEISER, L. & ZANG, T. A. 1991 Numerical simulation of transition in wall-bounded shear flows. 
Ann. Rev. Fluid Mech. 23, 495-537. 

KNAPP, C .  F. & ROACHE, P. J. 1968 A combined visual and hot wire anemometer investigation of 
boundary-layer transition. AZAA J.  6, 29-36. 

LIN, C. C .  1955 The Theory of Hydrodynamic Stability. Cambridge University Press. 
LIN, C. C. 1957 On the instability of laminar flow and transition to turbulence. ZUTAM Symposium 

FreiburglBR, p. 144. 
MANKBADI, R. R. 1990 Critical-layer nonlinearity in the resonance growth of three-dimensional 

waves in boundary layer. NASA TM-103639. 
MANKBADI, R. R. 1991 a Detuned triad interaction in boundary-layer instability. Bull. Am. Phys. 

SOC. JD6, 36, 2713. 
MANKBADI, R. R. 1991 b Subharmonic route to boundary-layer transition: critical-layer non- 

linearity. In Forum on Turbulent Flows (ed. M. J. Morris et al.), ASME FED, vol. 112, pp. 75-81. 
MANKBFI, R. R. 1993 The nonlinear interaction of frequency-detuned modes in boundary-layer 

transition. AZAA-93-0341. 
MASLOWE, S. A. 1986 Critical layers in shear flows. Ann. Rev. Fluid Mech. 18, 405-432. 

Math8 48, 18 1-204. 

including non-parallel flow effects. Proc. R.  SOC. Lond. A 375, 65-92. 

659-663 .) 

5 ELM 256 



106 R. R. Mankbadi, X .  Wu and S. S. Lee 

RAETZ, G. S. 1959 A new theory of the cause of transition in fluid flows. Northrop Corp. Rep. NOR- 

WID, W. H. 1965 The stability of parallel flows. In Basic Developments in Fluid Dynamics (ed. M. 

SARIC, W. S., KOZLOV, V. V. & LEVCHENKO, V. YA. 1984 Forced and unforced subharmonic 

SMITH, F. T. & STEWART, P. A. 1987 The resonant-triad nonlinear interaction in boundary-layer 

USHER, 3. R. & CRAIK, A. D. D. 1975 Nonlinear wave interactions in shear flows. Part 2. Third- 

Wu, X. 1992 The nonlinear evolution of high-frequency resonant-triad waves in an oscillatory 

Wu, X. 1993 On the critical-layer and diffusion-layer nonlinearity in the three-dimensional stability 

Wu, X., LEE, S. S. & COWLEY, S. J. 1993 On the weakly nonlinear three-dimensional instability of 

59-383, Hawthorne, California. 

Holt), pp. 249-308. Academic. 

resonance in boundary layer transition. AZAA Paper 84-0007. 

transition. J.  Fluid Mech. 179, 227-252. 

order theory. J. Fluid Mech. 70, 437461. 

Stokes layer at high Reynolds number. J. Fluid Mech. 245, 553-597. 

of boundary layer transition. Proc. R. SOC. Lond. (to appear). 

shear layers to pairs of oblique waves: the Stokes~ layer as a paradigm. J.  Fluid Mech. 253, 
68 1-72 1. 




